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proposition holds: the motion g(t, q) of systemG,is periodic if and only if it is L--stable 
and the kinetic energy T Ig(1, q))1i.s periodic. 

Thus the recurrence of the kinetic energy of the negatively Lagrange-stable system of 
n bodies fully defines the character of the recurrence of the motion of the system. Since 
the differential equations (1.1) of the motion of the system of n bodies have, in particular, 
the energy integral from which we can obtain an explicit expression for the force function U 
of system G,, it follows that all arguments and discussions can be applied to the function u. 
such an approach may be convenient when the recurrence of the motions is checked experiment- 

ally, since when the masses are known, the force function depends on the distance between the 
bodies of the system. 

Conclusions. 1”. The isochronism, i.e. the mutual comparability with respect to time 
recurrence of the kinetic energy and motion of the system of n bodies is the necessary condi- 
tion for the Lagrange stability of motion of such a system. 

2”. The motion of an n-body system is determined by a Gn-dimensional vector function, 
and its kinetic energy by a scalar function depending on the last 3n components of the veloc- 
ities of motion of the system. The isochronism of the 6n-dimensional vector function g(t,q) 
and scalar functkon T [g(t, q))l = T(t) is characterized by the fact that the Lagrange stability 
is a special property of the motion of an n-body system. Since the Lagrange stability repres- 
ents one of the possible forms of stability of the motion, it is possible for the kinetic 
energy to be minimal in some sense along the trajectory of the Lagrange-stable motion of an 
n-body system. In particular, this is the case for the kinetic energy of a recurrent, almost 
periodic and periodic motion of an n-body system. In the cases discussed above the kinetic 
energy is minimal in the Birkhof sense. 

3”. Energy constructions have a long history in celestial mechanics. However, this is 
apparently the first time that the energy integral and its corollaries have been applied 
directly to the qualitative study of the motion of an n-body system in the form given here. 
We also note that the basic results remain valid for other forms of interaction between bodies, 
provided that they depend on the distance only. 
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THE SEPARATION OF MOTIONS 

In different versions of the method of averaging, the motion is separated 
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IN SYSTEMS WITH RAPIDLY ROTATING PHASE* 

A.I. NEISHTADT 

into rapid oscillations and a slow drift with an accuracy depending on 
the order of approximation. It is shown below that in analytic systems 
with rapidly rotating phase this separation can be achieved so that the 
error is exponentially small. The remaining small error is shown to be 
theoretically impossible to eliminate in any version of the averaging 
method. From the statement of exponentially exact separation of oscilla- 
tions and drift it follows in particular that the time the adiabatic 
invariant is maintained in single-frequency Hamiltonian systems (such as 
a pendulum with a slowly varying frequency, a charged particle in a weakly 
inhomogeneous field, etc.) is exponentially large. This statement is also 
used to prove that the splitting of the separatrix that occurs in the 
neighbourhood of resonance close to an integrable Hamiltonian system with 
to degrees of freedom, is exponentially small. 
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1. Statement of the problem. Systems with rapidly rotating phase represent one of 
the fundamental objects of the asymptotic theory of non-linear oscillations [I]. Thier equa- 
tions of notion have the form 

z* = ef (.t, rg, e), V' = 0 (z) f eg fx, cp, e) 

z E R", v mod 2x E S’, e CE lo, e,l 

ii.i! 

Here e>O is a small parameter, X is an n-dimensional vector called the vector of slow 
variables, and ‘p is a scalar angular variable called the phase, with the right sides of (1.1) 
2x-periodic in rp. It is assumed that the frequency O(I) does not vanish in the region 

considered, i.e. w (2)> c-l> 0, c = co&. 
The symptotic method of averaging enables us to construct for any integer m >(I a 2x- 

periodic in 'p close to identical replacement of variables (5, ~)+(y,~): 

= = Y + SU (Y, $, e), V = \I + eV (Y, $, e) (1.2) 
U = 0 (I), V = 0 (1) 

so that. the equations fox new variables contain a phase $ only in terms of Order P+l 

fi' = e (F (5 8) + a (Y, 9, S)f, 11; = Q (Y, ef + 4 fv, 9, e) (1.3) 

a = 0 (em), 6 = 0 (em) 

F = <n + 0 (e), B = co f 0 (e) 

The angle brackets denote averafing over the phase 9. The functions u, V are polynomials 
of power m in e. 

Neglecting on the right side of (1.3) the small terms a, @, we obtain a shortened system 
of the m-th approximation whose solutions approximate the solutions of (1.3) and, also, of 
the input system (1.1) in the time interval 0 <t <l/s with accuracy O(P) for x and 0(&m-1) 
for 'p. The shortened system is much simpler to investigate than the original, as in it the 
drift iscompletely separated from the rapid oscillations. For example, its integration step 
can be l/e times greater than for (1.1). 

When m approaches infinity, we obtain, for the replacement of variables (1.2), series in 
e which are, however, generally divergent. Bence it is not possible to eliminate the phase 

from the equations and separate the slow and rapid motions. We consider below the question 
of the limiting accuracy of the separation of motion. It turns out #at it is possible to 
achieve an accuracy of 

0 (exp (-cl-‘/e)), c1 = const 

2. .Formulations . Let the right side of .(l.l) be real-analytic functions in the complex 
6-neighbourhood Df 8 of the real region D = G {x) X Sl{cp}, that satisfies the estimates 

ifI<CP Igl<C, c-l<lol<e 

where 6, c, C are constants and G is a region in R”. 

Theorem 1. when (Y, $J E D + ‘I$, 0 < E< e1 , there exists a real analytic 2n-periodic 
in 8 replacement of variables of the form (1.2) that reduces the system to the form (1.3) with 
exponentially small a and p 

I = I + t B t < cz exp t--cl-W, I U I + I V I < cs (2.L) 
I~-<<f>ltI~--o<w 

where E,, c~, . . ., cI are positive constants which depend on the constants e,,, 6, c, c introduced 

above. 

Remark 1. A more exact elimination of the fast variable from the equations is, generally, 

impossible. Sect.5 gives an example of a system in which.for any replacement of variables of 
the form (1.2) an exponentially small term dependent on the phase remains. 

Remark 2. If system (1.1) is Hamiltonian, the replacement (1.2) Can be Of Canonical form. 

Remark 3. Let t play the part of phase, i.e. (1.1) has the form 

5' = ef (2, t, e) (2.2) 

Then Theorem 1 holds for f Continuous with respect to t and is a real-analytic with re- 

spect to x. The replacement of variables has the form z = y f &U(y, t, 8) and the function u 
is real-analytic in y, while the smoothness of U with respect to t is one greater than the 

smoothness of f. If system (2.2) is Hamiltonian, the replacement of variables can be selected 

to be of canonical form. 
The mapping of sequence of system (2.2) in the time t = 2n has the form 

I' = z + eE (2, e) (2.;) 
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Conversely, any representation of the form (2.3) can, obviously, be obtained as the mapping 

of a sequence for some system of the form (2.2), with function f(z,I,E) continuous with respect 

to t. Hence Remark 3 implies the following theorem on t@e mapping ,(2.3). 

Theorem 2. Let the function Z(s, &) be real-analytic and satisfy the estimate 1 t(s, E) I< 

C when s=G + S. Then, when y E G +- 'I$, 0< E <Ed , there exists a real-analytic separa- 
tion of variables 

2 = Y + su (Y, E), 1 u i <Q? (2.4) 

that reduces (2.3) to the form 

Y’ = y + E (L (y, e) + ~4 fy, of),, I a I <c,ev (--CI+) (2.5) 

with shortened mapping (2.5) (with rejected a) is included in the stream, i.e. it can be 
represented as the mapping of the displacement in the time t =2x for the autonomous analytic 
system 

y' = EF (y, E), I F - 2x1 1 < Ca& (2.6) 

where 81, $7 . . ., CI are constants which depend on E,,,& C. 

Remark 4. A more exact inclusion of mapping (2.3) in the stream is generally not possible 
(see Sect.51 - 

Remark 5. When the mapping (2.3) is canonical and smoothly depends on e, the replacement 

(2.4) can be selected to be of canonical form, and system (2.6) of Hamiltonian form; its 

Hamiltonian H(x, E) satisfies the estimate 

I H (5, 9 - E (4 I < c5e (2.7) 

E(rt)=2n 5 l(@) dp - I@') dq 
x0 

where Q, p are conjugate components of x, and I(@, l(P) are their respective displacement compon- 
ents I, taken for 8 = 0, and the integral in (2.6) is independent of the integration path by 
definition of the canonical transformation. 

3. The use of the adiabatic invariant to estimate the preservation time. 
Let system (1.1) be Hamiltonian and I the slow variable conjugate to the phase cp. The 
variable I is an adiabatic invariant 121: in the time interval 0 < tf UC it only undergoes 
oscillations of the order of E, whereas the order of variation of the remaining slow variables 
can be of the oider of unity. The following statement evaluates the variation of 1 over an 
exponentially long time interval. 

Proposition 1. ff solution (l.i) does not leave the region D when Cl,< t< T = exp(l/~c~-x/~} 
thenalongthatsolutionoverthistimeintervalthedifferencebetween 1 and its value at t = 0 
does not exceed 3c& Here the constants clrc3 are taken from Theorem 1. 

Proof. According to Remark 2 of Sect.2 the replacement (1.2) can be selected to be of 
canonical form. Let J be a varaible, conjucjate to the new phase 9. In the shortened system 
(1.3) (with rejected a), J is an integral since the HamiLtonian does not contain 9. In the 
complete system (1.3) J varies exponentially slowly ISI< c,exp(-c,%) its variation during 

the time T is exponentially small. Let I,, J, be the values of I, J when t =O. Then II- 
r,i,<lf-J\+ IJ-J,t+ lJ,- I,\ <3c,e, which it was required to prove. 

Exampie 1. Consider a linear oscillator with a slow varying frequency E"+ &(et)E=O. Let 
the function O(T) be analytic in the strip /1mr1<6 and satisfy the estimates c-l<1 oi<C. 
Then over an exponentially large time interval the adiabatic invariant I= E/o, b==Vn(E'*+ I&*) 
(the ratio of the oscillator energy to its frequency 121) undergoes only oscillations of order 
c. 

Example 2. The motion of a charged particle in a weakly non-uniform magnetic field is 
represented as the motion along the Lannor circle that dirfts along a line of force of the 
field. Let the relative field strength variation along the length of the Larmor radius not 
exceed ~<l. We denote by EU~ the velocity component normal to the field, line of force of 
the and by 8 the magnetic field. Over an exponentially large time interval the transverse 
adiabatic invariant I== wiV(2B) III is a quantity conjugate to the phase of the motion along 
the Larmor circle, undergoes only oscillations of order E (on the assumption that in that time 
interval the particle does not leave the region of the field considered and that the field is 
analytic). 

As in Proposition 1, the statement relative to the Hamiltonian system (2.2) follows from 
Remark 3 of Sect.2, Let &i(x,t) be the Hamiltonian of such a system. 

Proposition 2. If solution (2.2) does not leave region (; when O< t < exp (4’2c1-i/~) , then 
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along that solution in such a time interval the function <H (x. .)> undergoes oscillations 
not exceeding 3c,e. 

Example 3. Let a point move in the rapidly oscillating one-dimensional analytic potential 
well: its energy is X=li,(pp+ Cr(q,v)), v = tie.In conformity with Proposition 2 the value of the 
function tH> ='/z(P~~- (U(q,.)i) during an exponentially large time interval changes only by a 
quantity of order e. 

For the canonical mapping of the form (2.3) a similar statement follows from Remark 5 in 
Sect.2. Let the function E(x) be defined in conformity with (2.7). The successive applica- 
tion of mapping provides the discrete trajectory of the point. 

Proposition 3. If for M = lexp (‘!,c,-lie)1 ‘t I erations of the mapping (2.3) the point does 
not kaV@ G, then the oscillations E(x) on its trajectory do not exceed 3c3&. 

Example 4. Consider the motion of a small sphere between two walls the distance between 
which changes slowly. The collision of the sphere with the wall is assumed to be perfectly 
elastic. Let the distance of the walls from the origin of coordinates be specified by the 
functions d,(2),df(z),r= Et, analytic in the strip [ Imzl<b, and satisfy the estimates I 4 I < 
C, c-’ < 1 d, - doj<C. We wi.l.1 assume for simplicity that the origin of coordinates always lies 
between the walls (d,<O(d& Let the small sphere pass through the origin of coordinates 
at the instant t with velocity W. On being reflected from the two walls it again passes 
through the origin of coordinates in the same direction with velcoity WI at some instant t'. 

It can be verified that the mapping et, ~i,w~- et’, tl,wQ is canonical and close to identical. 
Calculations show that the adiabatic invariant I = w(d,-dl) plays the part of the function E 
(2.7) 121 (with an accuracy of 8x 1. According to Proposition 3, I can change over an ex- 

ponentially long time interval not more that by the quantity k,e,k,=const. 

Example 5. Let it now be assumed in the problem of Example 4 that the walls do not move 
slowly d, = d, (t), 4 = d, (t). This problem was studied as a model in the analysis of particle 
acceleration induced by quasi-random collisions (the "Fermi-Ulam model" [31). Let us estimate 
the upper limit of the rate of acceleration. We use the following reasoning here: if the 
velocity of the sphere becomes considerably greater than that of walls, then the adiabatic 
invariant I = w (d8--dt) occurs in the problem, and this inhibits rapid acceleration. Suppose 
that at some instant the sphere passes through the origin of coordinates having I=f, and let 
e = kil,, k = supt(l 4.1.1 d;I}.The substitution of the time v = tie yields the problem of Example 2. 
Let N be the minimum number of collisions with the walls, which yield I>I,i-kl. The analysis 
of Example 2 shows that N> erp(k,I,),k, = convt. The upper limit for the rate of acceleration is 
obtained on the assumption that after exp (.$I) collisions I increases by k,. Then for n 
collisions we have W= 0 (Inn), i.e. only logarithmic acceleration is possible in this problem. 

4. Proof of Theorem 1. The necessary replacement of variables is carried out as in 
[&fj] in the form of a composition of a large number of successively determined substitutions 
that cancel the dependence on the phase in terms of ever higher order. Further calculations 
are aimed at showing that it is possible to make r- lie such replacements, inwhich case terms 
that depend on the phase decrease at least in a geometric progression. Here, the estimates 
in [51 are applicable to system (1.1) . 

4.1. procedure for successive substitutions. The system obtained after i substitutions 

has the form 
I' = s (F* (3) + Ui (5, V)f, 'p' = Q,(x) + &Pi ix* 9) (4.1) 

<ai> = <pi> = 0, (I, 9) E Di, D 5 612 c Di E: D f 6 

The explicit dependence of the right side on E is not indicated here, F, = (fh % =f - 
(f), Q,= w+e(g>, PO = g- {g),‘ D, = D f 6. At the (i + 1) -th step the replacement of variables 
is sought in the form 

r = Ys. 8" (Y, a% V = * + 8" (YV 9 (4.2) 

Substitution of (4.2) into (4.1) gives 

y'=eE+s ( ~~l(Fi(y+eu)+cri(y+eu,rp)- (4.3) 

*G(v+e4 - e + f4 (y -I- eu, tp)) = efi+l (Y, cp) 

1$~=(1 t e~)-l(~j(~+eU)+e~i(y+e~,~+eu)- 

where (p must be expressed in terms of 9,~ in accordance with (4.2), and E is the unit matrix 

of dimensions n x n. The functions u," are selected so as to suppress the dependence of 

the right sides of (4.3) on II, in the principal order of E 
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(4.4) 

where u and v can be supplemented by arbitrary functions of 9. 
Let ea, Eb be the set of terms in the first and second equations (4.3) respectively, of 

order higher than the first in E. Then 

(4.5) 

f4+, = a - (a>, BI+I = b - <b> 

4.2. Estimates. Assume that I steps of the procedure in Sect-l.1 have been made. The 

regionD,in which the system is considered after i substitutions is specified as Di = D, - 
2 (i - I) KE, D, = D -j- V,6, and K is a positive constant that is defined below. 

Considering the first step, we can show that formulas (4.2) and (4.4) for y, VE D, and 
fairly small E in fact determine the replacement of variables, and 

I a1 I +- I Bl I < 4~ I u I + I in I < 48 
I F, - <f> I + I Q, - o i < ks 

(4.6) 

where k,, k,, k, and further ki are positive constants. 
Let us use the inductive proposition that for I< i <r the estimates 

[ Fi I < 2C, ‘/ZC-~ < 1 Qi \ < 2C (4.7) 

I ai 1 + I fit I < Mi, Mi = 2-*+‘klE 
are satisfied. 

We select the constants al, K so that the replacement of the variables (4.2) with i = r 
is determined when O<E< e,, yE DI, = D,- 2Ks , and the equations obtained satisfy the 
estimates (4.7) with i = r+ 1 (it is of course assumed here that D,,, is non-empty) o 

It follows from (4.4), (4.7) and the Cauchy estimates [4] that for i = 1, . . . . r and y E 
Di- KE the conditions 

I eu 1 < 2cnMie < k,e, I ED 1 < k,e 14.8) 

are satisfied. 
We select K > 2 rnax (k,, kp), Q< l/,ks’l. Then the inequalities (4.8) for u,v show that 

formulas (4.2) define the mapping of D,I in I), - KS, and the inequalities for &i&, Bv/ay 
show that this mapping is a diffeomorphism of Dr+ i.e. is in fact a definition of the re- 
placement of variables. For the functions a and b (4.5) from b(4.7) and (4.8) and the Cauchy 
estimateswehave the estimates 

I a I + 1 b I < b (K-l + E) Mr 
Selecting K fairly large and E fairly small, we obtain 

1 a ) + [ b I < ‘l&fc, I ai+, I+ I &+I I < “dfi = Mi+l 

I Pi,, - Fi I “I- I %+1 - Q, I < ‘i&f1 

(4.9) 

from which and (4.6) it follows that 

iFi_<(f)I$_ IQ,--Ol<kas, i=;l, . . . . r+4 

Hence for fairly small E the inductive inequalities (4.7) are satisfied for i = r+ 1. 
This means that the necessary replacements of variables with selected K and E can be carried 
out as long asD,is non-empty. After r = L’/,GK’/tf> 4/e replacements of variables we have 

I a, I -t- I & I < Z"'+%,e < cI exp (-c;Ve) 

and the remaining inequalities (2.1) are satisfied, which it was required to prove. 
If system (1.1) is Hamiltonian, the substitutions in all approximations can be selected 

to be of canonical form. Their composition provides a canonical transformation whose exist- 
ence is confirmed by Remark 2 in Sect.3. 

If the time t plays the part of the phase in system (l.l), then UWO in (4.4) so that 
only x is transformed. Hence for the estimates only the analyticity of x on the right sides 
of the' equations is necessary, and the continuity with respect to t is sufficient, as stated 
in Remark 3 of Sect.2. 



5. The unimpravability of the estimates. 
system of equations 

Consider the trivially integrabie 

‘r' = &f (z, rp), z* = e, cp' = 1 is.1; 

f{z,(9)=sin q_$l~sinmz, a,=exp t-m) 

Let z be the angular coordinate so that the replacements of variables must be selected 
as &c-periodic in z. When rp is eliminated from (5.1) ( it is possible to leave out the 
transfonuation of z, cp and consider replacements of the form x = y + eu(z, rp) r whose substitu- 
tion into (5.1) gives 

y’=e f(p,Ip)-_---e~=efi(Z,cp) I (5.2) 

Let us estimate the Lower bound of IfI - (fl> 1. For this we calculate for C = l/m hi is 
an integer) the integral over the closed path cp- rnz = 'p. = const on the torus T2 = ((2, p) modd 

fn) 
2x . 

!I vr fG fpB + mz) - <fl>) & = -+ =P 
I) 

Hence when e f llm the inequality 

max I fl @, 0) - W I~>(4W' e=P b--W 
is satisfied, i.e. for any replacement of VatLaMes an the right side of (4.2) there remains 
an exponentially small term dependent on the phase. This means that the estimate of Theorem 
i cannot be improved. 

Fig.1 Fig.2 

A simiLar reasoning for the mapping 

m 

x’==x+-e I: a,sinmz, z’=z+e 
m=1 

proves the unimprovability of the estimates of Theorem 2. 

6. The exponential smallness of separatrix splittinll;. we will use the state- 
ments of Sect.2 to estimate the magnitude of separatrix splitting which occurs close to the 
resonance in the Eiamiltonian system with two degrees of freedom, close to integrable. When 
one of the angular variables is selected as the new time, the Hamiltonian of this system takes 
the form 

H = H, (4 4. PH, (I, cp, 4 (6.1) 

where I, rp are the conjugate canonical variables, t is,the time, p>O is a small parameter, 
and the HamFltonian is 2n.-periodic in v, t and analytic in all variables. Let 1, be the 

simple resonance value of 1 

where m, n are relatively prime integers. Close to resonance we introduce new canonical vari- 

ables p =(I- IJ/fr, 4 = cp - r&n, in which the Iiamiltonian has the form 

where E has a period of 2n in g and 2zn in t. If we neglect the last term in (6.2) and 
average the Hamiltonian over t, we obtain a system with one degree of freedom, which describes 
the motion of a point in the potential U(p) = (V, (q, .)> &in-periodic in 4, Suppose 

U(q) has a unique point of absolute maximum that is non-degenerate. Unstable equilibria of 
the averaged system, connected by separatrices (Fig.l), correspond to the maxima of u (9). I* 
the exact system (6.2) for fairly small ~1 to such a equilibria and separatrices there corres- 
pond unstable periodic solutions and surfaces asymptotic to them ,171. The cross sections W, 
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and W, of these surfaces by the plane t = 0 are shown in Fig.2.W" and W,are invariant 
curves of sequence mapping during the time 2xn for system (6.2) which are asymptotic to 
stationary points N and N’. Curves W,, and W, generally do not coincide with one another- 
the separatrices @it. It was shown in (71 that finite segments of W, and W, are indisting- 
uishable from one another with a powe_r accuracy with respect to p ; in existing examples the 
difference is of order exp(-con&/l/p). 

The following theorem shows that generally the splitting of separatrices is exponentially 
small. 

Theorem 3. Curves W,, and W, lie in the union K, exp (-K;‘/I/F) of the neighbourhood of 
two analytic curves that are ?&/n-periodic in q and uniquely projected on the q axis; K, and 

K, are positive constants. 

The scheme of proof. According to Theorem 1 and Remark 3 to it, when Ip I< K, there 
exists a diffeomorphism c~:p, Q- P,Q (the replacement of variables), which is analytic, simplex, 
2nn periodic in t and 2n periodic in q, and close to identical, which reduces the 

Hamiltonian of the system to the form. 

F = 6-f%+ -t- u CO)1 + ~8 (P, 0. 10 + a (P, 0, t, p) 
) R 1 = 0 (i), I a ) = 0 (exp (--&-‘/(/ii)) 
K, = 2(maxp U - millq V) = const, li, = const 

(6.3) 

where the function R is Znln perodic in Q. 
If the last term in (6.3) is neglected, a system with one degree of freedom is obtained. 

Its separatrices do not split, and as shown in Fig.1, form together with the singular points 
two analytic curves S,,S,, which divide the phase plane into regions. In accordance with [4] 
system (6.3) has a number of invariant tori whose sections by the plane t=O are closed or 
periodic invariant curves of the mapping sequence (Fig-Z). Using the estimates [a,91 it can 
be shown that in each of the regions of subdivision of the phase surface there is an invariant 
curve lying at a distance O(exp(-&-l/l/j;)) from S = S, u s,. These curves bound the invariant 
region D in which the stationary points of the mapping sequence @(N),Q,(N')and, also, their 
asymptotic invariant curves UJ(W,),@(W,) lie. Hence W,, and W, lie in @-l(D) and, consequently, 
in the union li,e~p(---K,‘~/1/F) of the neighbourhoods of the curves Q+ (S,) and 0-l (s,) , stated 
above. 

The author thanks V.I. Arnol'dfor his interest and advice, and 1A.G. Sinai an 
Kornfeld for useful discussions. 

.d I.P. 
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